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Abstract. Deoxyribonucleic Acid (DNA) plays a major role in 

the development, growth and reproduction of all living 

organisms. Due to the recent development of scientific researches 

in biology, virology and medicine public databases are over 

flooded with enormous amount of DNA data. It not only faces 

severe challenges like storage but also restricts transmission 

capacity and retrieval process. Lossless DNA Compression is 

used to reduce the size of data, improve the capacity of storage 

medium and henceforth vast amount of data can be transmitted at 

any given time. There are many existing lossless DNA 

compression algorithms most of them of which are not suitable 

for compressing the DNA data. In addition, the development of 

compression algorithms that help to reduce the size of DNA data 

is rather a difficult task. This paper discusses the recent 

researches on various lossless compression algorithms. Reviews 

on standard algorithms are briefed. The study shows that 

compression of DNA sequence is vital for understanding the 

essential characteristics of DNA data. Two major categories 

namely, horizontal mode and vertical mode are focused. A 

comparative study about the notions of the different modes of 

DNA compression algorithms is analysed. To evaluate the 

performance of DNA compression algorithms commonly used 

metrics such as compression ratio, saving percentage and time 

taken for compression and decompression were used. An outline 

of some research problems that assist for further development of 

effective compression algorithms for DNA data and the scope for 

future enhancement are also discussed. 

 

Keywords: Bioinformatics, Deoxyribonucleic Acid, Horizontal 

mode, Vertical mode, Compression Ratio. 

 

1. INTRODUCTION 
Bioinformatics is a broad multi-disciplinary field that 

aims to solve biological problems using Deoxyribonucleic 

Acid and other related information. Deoxyribonucleic 

Acid, or DNA, is a long, linear vital molecule of living 

organisms. The primary structure of DNA molecule is a 

double helix strand made up of four molecules or bases 

namely, Adenine (A), Cytosine (C), Guanine (G), and 

Thymine (T).  

A DNA sequence is an elongated string which 

comprises a set of consecutive bases (Example: chmpxx 

sequence - 

TTGAACGAGAAGCCGTATGAAATGAAAATAT). 

Many researches in bioinformatics focus on the study of 

DNA sequences based on their functions and features. For 

instance, diseased DNA sequences are compared with 

healthiest ones to detect the major differences between 

them. Besides, the DNA sequences are analyzed to identify 

similarity between patterns. For these reasons, huge 

amount of DNA sequences are stored in databases. When 

the length of the DNA sequence increase rapidly, storage 

and transmission become significantly harder. In addition, 

it causes a major issue for many analysis tasks owing to its 

high memory usage and cost for computation.   

Compression is an effective way for reducing the size 

of DNA sequence. The basic concept behind compression 

is to reduce the number of bits needed to store DNA 

sequences as they can lead to improved storage capacity 

and minimum network traffic. The need for compression 

algorithms and expertise has increased as Genome Projects 

resulted in an exponential growth in DNA databases. With 

years of research and development, there are several DNA 

compression algorithms available to reduce the size of 

DNA sequence. Compression algorithms are primarily of 

two types: Lossy and lossless.     

 Lossy involves loss of information. 

 Lossless results in no loss of information.  

There are many situations that require compression where 

the reconstruction is to be identical to the original. In 

addition, there are also numerous situations in which it is 

not possible to relax this requirement. This opens a 

challenging question in research fields, such as how to 

reduce the size of DNA sequence without sacrificing loss 

of information. Therefore, lossless compression algorithms 

that best approximate the original dataset with reduced 

storage cost are likely to play an important role in DNA 

sequence compression. 

The paper presents a general study of DNA 

compression algorithms that have been useful to reduce the 

length of the DNA sequences. Most text compression 

algorithms have focused on the compression of DNA 

sequences. However, DNA sequences often consist of 

many repeated and non-repeated bases. It is not easy to 

compress DNA sequence with good compression ratio 

using text compression algorithms. Some interesting 

compression algorithms include LZ77 (Ziv and Lempel, 

77), LZ78, Prediction with Partial Match (PPM), Context 

Tree Weighting (CTW), GNU zip (GZip), Compress 

method and Bzip2. LZ77 retains a dictionary in which 

previously encoded input stream is stored. Sliding window 

method is used to examine the input stream. It is divided 

into two buffers: 1) Search buffer – holds recently encoded 

stream and 2) Look-ahead buffer – holds next segment of 

the stream to be encoded. At the decoding phase, a buffer 

is maintained equal in size to the encoder’s window. A 

good compression ratio is achieved for many sequences. 

Though it requires less amount of memory more time was 

taken to encode the sequences [1].  LZ78 (Ziv and Lempel, 

1978) uses dictionary for both encoder and decoder instead 

of any search buffer, look-ahead buffer or sliding window 

[2]. PPM method (Cleary and Witten, 1984) compresses 

the DNA sequences with compression ratio greater than 

two bits per base (bpb) [3]. CTW (Willems et al., 1995) is 
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suitable to compress the DNA sequences below 2 bpb [4]. 

GZip (Jean-loup Gailly and Mark Adler, 1992) uses 

adaptive Lempel-Ziv coding to compress the named files 

in deflate mode [5]. The performance of Compress method 

(Terry Welch, 1984) based on LZW coding is high with 

minimum memory requirements. Nevertheless, the 

compression ratio of compress method is significantly low 

[6]. In Bzip2 (Julian Seward, 1996), Burrows-Wheeler 

block sorting technique and Huffman coding are used to 

reduce the size of files [7]. However, most traditional 

compression algorithms have not achieved good 

compression results. 

The paper is organized as follows: Section 2 

categorizes the different DNA sequence compression 

techniques. The formulae of the commonly used 

performance metrics are shown in Section 3.  Section 4 

describes the recent horizontal mode DNA sequence 

compression algorithms. Reviews of vertical mode DNA 

sequence compression algorithms are discussed in Section 

5. Experimental results of hybrid algorithms are shown in 

Section 6. Finally, Section 7 summarizes the different 

lossless DNA sequence compression algorithms. 

 

2. TAXONOMY OF DNA SEQUENCE 

COMPRESSION TECHNIQUES 
This section gives an overview of the techniques 

reviewed in DNA sequence compression algorithms. The 

classification of different DNA sequence compression 

algorithms are shown in Figure 1. DNA compression 

algorithms are classically split into two common methods: 

Horizontal mode and Vertical mode. 

 

 

 
Figure 1: Taxonomy of DNA Compression Techniques 

 
2.1 HORIZONTAL MODE 

The horizontal mode compresses a sequence based on 

its information i.e., sequences are compressed 

successively. Broadly speaking, horizontal mode 

compression algorithms are divided into the following 

categories: 

 Substitutional based methods – A dictionary of frequently 

appearing bases is maintained and when these bases appear 

in the sequence they are replaced by the codeword in 

dictionary.  

 Statistical based methods – Variable size short codes are 

assigned to frequently appearing bases or set of bases in 

the sequence.  

 Substitutional and Statistical based methods – Features of 

both substitutional and statistical methods are used to 

encode the sequence.  

 Transformational based methods – Transformations takes 

place in the actual sequence and compression is applied 

only on the transformed sequence. 

 Grammar based methods – Compresses a text string using 

context-free grammar. The compressed string is encoded 

by a symbol which in turn is converted to binary [8]. 

 Two-bit based methods – Unique binary bits are assigned 

for the bases (A = 00, C = 01, G = 10, and T = 11). 

 

2.2 VERTICAL MODE 
The vertical mode works by using the information 

stuck between two sequences by referring to the 

information contained in only one of the sequence.  

 

3. PERFORMANCE METRICS 
The effectiveness of a compression algorithm can be 

evaluated in various ways:  

 

 

3.1 COMPRESSION RATIO (CR) 
The compression ratio is the ratio between compressed file 

size and original file size. Compression ratio is formally 

expressed in bpb or bits per character (bpc).  
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CR = Compressed file size / Original file size 

 

3.2 COMPRESSION FACTOR (CF) 
The compression factor is the ratio between original file 

size and compressed file size. Compression factor is the 

inverse of compression ratio. 
 

CF = Original file size / Compressed file size 

 

 

3.3 SAVING PERCENTAGE (SP) 
Saving percentage is the difference between original file 

size and compressed file size to the size of original file.  
 

SP = (Original file size -Compressed file size) / 

Original file size 

 

3.4 COMPRESSION TIME 
Compression time refers to the amount of time, in 

milliseconds, needed to compress the file.  

 

3.5 DECOMPRESSION TIME 
Decompression time refers to the time required to 

decompress the compressed file to its original form. 

Decompression time is expressed in milliseconds.    

 

4. HORIZONTAL MODE ALGORITHMS  
With sophisticated DNA compression tasks, there is much 

opportunity for research and development of advanced, 

effectual, and scalable horizontal mode DNA compression 

methods in bio-informatics. Some interesting methods are: 

4.1 SUBSTITUTIONAL BASED METHODS 
Most compression algorithms are based on 

substitutional based methods. Murugan and Punitha, 

(2021) have designed a Pattern Matching Extended 

Compression Algorithm (PMECA) to compress the DNA 

sequence. PMECA is the extension of improved-compress 

algorithm [9]. First, it scans segments of the sequence and 

identifies identical patterns. Based on the number of bases, 

the patterns are stored in dictionary either in permanent or 

temporary manner. Matchless patterns are converted and 

grouped into zeros and ones. Standard datasets taken from 

GenBank of National Center for Biotechnology 

Information (NCBI) [10] was used for analysis. The 

algorithm resulted with a compression ratio of 91%.  

Simulation results have shown significant improvement of 

speed and reduction in file size over existing algorithms 

[11]. 

Cui et al., (2020) proposed a new approach using deep 

learning and arithmetic coding. In the preprocessing step, 

sliding window of the sequence was transformed into 

vectors. The local and global features are mined using 

Convolutional Neural Network (CNN) and Bi-directional 

Long Short-Term Memory Networks (BiLSTM) model. 

The algorithm is 3.7 times better compared to DeepDNA 

[12]. 

GeCo2 tool is an enhanced version of GeCo tool 

developed by Pratas et al., (2020) [13]. The genomic 

sequences compressed using this method are combined 

with cache-hash sizes, inverted repeats, interface for 

command line, novel pre-computed levels, and different 

code optimizations. The algorithm resulted with 0.2142% 

saving percentage when compared with GeCo. 

Hui Chen (2020) suggested a genome sequence 

compression algorithm using entropy coding technique 

based on context modeling. The sequences are divided and 

transformed into four clusters, namely, coding sequence 

cluster, intron cluster, RNA cluster and residual cluster. 

Each set will be arranged corresponding to certain 

characteristics of the sequences which are encoded using 

entropy coding technique. The method was tested with 

benchmark datasets taken from US Genbank database. The 

algorithm resulted with an average compression ratio of 

1.72 bpb [14]. 

Mansouri et al., (2020) described a novel lossless DNA 

Compression Algorithm based on Single-Block Encoding 

Scheme (DNAC-SBE). There are three phases namely, i) 

One-Bit Method Phase – position of bases with high 

frequencies is replaced by ones and others by zeros.  ii) 

Single-Block Encoding Phase – encodes the generated 

streams and iii) Third Phase – assigns shortest codeword 

for each block dynamically.  It is observed that DNAC-

SBE has outperformed the other DNA sequence 

compression algorithms [15]. 

Shan E Zahra et al., (2019) [16] presented the Run 

Length Index Based Coding (RLIBC) algorithm. The basic 

steps are: 1) Remove all redundant DNA sequence from 

the input genomic dataset and store its index number 2) 

Perform segmentation process on each segment 3) Finally, 

compare each segment with index and transform the index 

number into binary code. When compared with other 

algorithms RLIBC has achieved an average compression 

ratio of 1.75 bpb and average compression factor of 

5.7311. Data savings is 82.6% and average time taken for 

compression and decompression is one second. 

Ayad E. Korial and Ali Kamal Taqi (2018) proposed a 

novel technique A2 to reduce the file size. The algorithm 

consists of four stages to make the substitutional model. 

The first stage is a modified version of Run Length 

Encoding which generates a symbol. The next two stages 

perform pre-mapping and post-mapping and the final stage 

develops a permutation technique using Burrows-Wheeler 

Transform (BWT) method. The algorithm achieved better 

compression ratio and saving storage space when 

compared with GenCompress [17]. The results of the 

various substitutional based compression methods are 

given in Table 1.  

 
Table 1: Performance Evaluation of Substitutional Based Compression Methods 

Methodology Dataset 
Performance Metrics 

Drawback 
Saving Percentage CT(sec) 

PMECA[11] Humhdystrop 93 1.1  
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Humghcsa 90 2.1  

Humhbb 90 2.4  

Humhdabcd 91 1.9  

Humhprtb 90 1.6  

  CR(bpb)   

Deep Learning 

Model[12] 

Fish 0.70   

Birds 0.66   

Human 0.01   

Ray-finned fishes 0.81   

  No. of bytes needed CT(sec)  

GeCo2[13] 

HoSa  38845642 652.4  

GaGa  33877671 494.7  

DaRe  11488819 198.8  

OrSa  8646543 138.3  

DrMe  7481093 102.4  

EnIn  5170889 82.5  

ScPo  2518963 34.2  

PlFa  1925726 35.3  

EsCo  1098552 5.1  

HaHi  902831 4.4  

AeCa  380115 1.9  

HePy 375481 1.9  

  CR(bpb) CT(sec)  

Entropy Coding 

Technique[14] 

Chmpxx 1.5788 2.06 

High compression time  

Chntxx 1.5891 1.56 

Humhprtb 1.8532 0.57 

Humhbb 1.8318 0.92 

Vaccg 1.7788 3.13 

  CR(bpb)   

DNAC-SBE[15] 

Chmpxx 1.604  

Does not accept  

any other data 

Humhstrop 1.724  

Humhbb 1.717  

Humhcvcg 1.741  

Mpomtcg 1.721  

Vaccg 1.671  

Mtpacga 1.650  

Humhrtb 1.720  

  

Percentage of 

Reduction 
  

 

DNAC-SBE[15] 

 

NC_017526 23.61  

 

Does not  

accept any 

other data 

NC_017652 22.06  

Ce10 28.98  

sacCer3 25.53  

Eukaryotic 19.71  

  C-Size C-Mem D-Mem CT DT  

DNAC-SBE[15] 

NC_017526 0.55 36.71 64.31 1.78 1.24 

Does not  

accept any 

other data 

NC_017652 01.06 49.03 101.45 1.67 1.27 

sacCer3 02.48 5.09 13.54 26.57 9.71 

Ce10 19.75 68.75 212.75 73.13 45.04 

Chimpanzee 570.73 522.23 729.9 1445.15 1155.97 

Korea2009024 577.23 649.56 703.69 1479.57 1003.27 

Eukaryotic 423.32 1859.00 1349.05 1117.44 903.1 

  CR(bpb) Reduction to %   

RLIBC[16] Humhstrop 1.400258 82.49678   
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4.2 STATISTICAL BASED METHODS 
Statistical based compression methods are much 

familiar methods for reducing DNA sequences. Gede Eka 

Sulistyawan et al., (2020) have suggested a compression 

system which combines Burrows Wheeler Transform and 

Hidden Markov Model namely BWT-HMM. BWT was 

applied to restructure the DNA data which generates 

numerous redundant bases. The DNA data are segmented 

according to a single DNA base repeat. Re-estimation 

algorithm was used to reduce the storage space. The 

methodology was tested with DNA datasets taken from 

NCBI. Performance metrics such as compression ratio and 

time taken for computation were calculated. The proposed 

algorithm resulted with 4.276 bpb compression ratio with 

an improved mean compression ratio of 4.004 [18]. 

Sebastian Deorowicz (2020) introduced FQSqueezer 

that utilizes partial matching and dynamic Markov coder 

algorithms for genomic data compression. 

Experimentation results (Table 2) have shown that this 

algorithm has achieved better compression ratio for 

standard benchmark datasets [19].

  

Table 2: Performance Evaluation of Statistical Based Compression Methods 

 

4.3 SUBSTITUTIONAL AND STATISTICAL 

BASED METHODS 
It is a hybrid method that combines both substitutional 

and statistical approaches. Word based compression 

technique (Sanjeev Kumar et al., (2020)) compresses the 

genomic data using Modified Word Based Tag Code 

(MWBTC) and Delta Coding. Tests were conducted using 

FNA, FEN, Camera, and Eukaryotic datasets. The 

proposed algorithm helps to search DNA sequence devoid 

of decompression. When compared to LZMA and 

Seqcompress more than 20% to 30% better results were 

obtained (Table 3) [20]. 

 

Table 3: Performance Evaluation of Substitutional and Statistical Based Compression Methods 

 

4. 4 TRANSFORMATIONAL BASED METHODS 
In transformational methods the DNA sequence is 

transformed to a specific form before compression to attain 

good compression ratio. Raju Bhukya (2019) developed a 

Differential Direct (2D) coding method based on dynamic 

dictionary approach. The approach works on triplets of 

DNA sequence bases and patterns of length multiples of 

three. The dictionary table of 2D coding bifurcates into 

two parts: i) Static part and ii) Dynamic part. The 

performance of the algorithm when compared with 

existing 2D algorithm [21] gave minimum compression 

ratio with reduced computational time [22]. 

Jothi et al., (2018) described a lossless segment 

compression algorithm using Lempel-Ziv Welch technique 

to reduce the size of DNA sequences. The architecture 

consists of four parts: a) Upload the DNA sequences    b) 

Humhdabcd 1.414107 82.32366   

Humhbb 1.409723 82.37846   

Mpomtcg 1.369194 82.88507   

Vaccg  1.406292 82.42147   

  Compression Size Speed CT(sec)  

A2[17] 

gbbct45  20.9 0.453 MB/sec  196  

gbbct108  19.1 0.455 MB/sec  195  

gbvrt9  1.70 0.456 MB/sec  17  

Methodology Dataset 

Performance Metrics 

Drawback 
C-RAM  D-RAM 

CT 

(sec) 

DT 

(sec) 

FQSqueezer 

[19] 

ERR174310_1 91.6 90.6 12728 13100 

High memory 

usage and time 

ERR532393_1 16.4 16.4 1344 1452 

SRR327342_1 6.7 6.6 144 145 

SRR554369_1 6.2 6.2 68 70 

SRR635193_1 12.1 12.1 456 462 

SRR689233_1 11.7 11.6 406 413 

SRR870667_1 36.4 36.1 4127 4432 

SRR1265495_1 13.2 13.1 658 685 

SRR1265496_1 13.0 13.0 609 652 

Methodology Dataset 
Performance Metrics 

Drawback 
PCR C-Memory D-Memory CT DT 

WBCT[20] 

FNA 21.52 356.89 50.78 1593 1357 
Memory usage of  

LZMA is less 

compared to WBTC 

FEN 20.03 351.25 30.21 1321 1087 

Camera 10.02 98.59 24.62 786 627 

Eukaryotic 19.76 99.33 23.69 649 574 
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Organize the sequences c) Check relationship between two 

random sequences d) Compress the sequences using LZW 

technique. The proposed algorithm resulted with an 

improved compression ratio when compared to Extended 

ASCII algorithm, Modified RLE algorithm and 

COMRAD. Experimental results have shown that huge 

amount of time is required to arrange the sequences [23].  

Shengwang Du et al., (2020) designed a compression 

method where the bases are converted to standard 

characters in first phase. The characters are compressed 

using LZ77 algorithm in the subsequent phase. Ten 

genomes of size 1 to 15M taken from NCBI database were 

used for testing. The performance of the proposed 

algorithm was measured using standard metrics such as 

compression ratio, compression time and decompression 

time. The time taken for compression and decompression 

is 83% and 54% respectively [24]. Table 4 gives the 

performance evaluation of the reviewed transformational 

based compression methods. 

 

Table 4: Performance Evaluation of Transformational Based Compression Methods 

 

4.5 GRAMMAR BASED METHODS 

In grammar based methods, context-free grammar is 

applied on DNA sequences. The grammars are 

transformed into a set of symbols and finally encoded into 

binary form. Diego Diaz-Dominguez and Gonzalo Navarro 

(2020) [25] suggested a grammar based algorithm for 

collection of reads to construct BWT. The collection of 

reads is stored as grammar to compute BWT with the 

support of self-indexes. The method resulted with an 

average compression ratio of 4.83 bpb. The study have 

shown that the proposed algorithm outperformed other 

results such as Big Repair [26], Full-text index in Minutes 

Space (FM-index) [27] and Run-Length FM (RLFM) [28]. 

 

4.6 TWO-BIT BASED METHODS 

In two-bit based methods the bases A, C, G and T are 

encoded by four distinct two-bit binary values 00, 01, 10 

and 11. Murugesan (2020) described a novel Codon based 

compression algorithm [29] based on two bit binary 

substitution technique. Additional dictionary is not 

employed to compress or decompress the genome 

sequence and hence additional memory is not required. 

Experimental results (Table 5) have shown an average 

compression ratio of 1.59 bpb with an average 

compression time of 0.18 seconds.

Table 5: Performance Evaluation of Transformational Based Compression Methods 

 

5. VERTICAL MODE ALGORITHMS 
This section reviews works that has focused on lossless 

DNA sequence compression algorithms based on vertical 

mode (Table 6). Bruno Carpentieri (2020) described a next 

generation sequencing data compression algorithm [30] to 

encode the DNA sequence using two bit encoding 

technique. The algorithm was tested using six DNA files 

namely, Lambda Virus (48,502 bytes), Homo 

sapiens.GRCh38.dna (3,072,712,323 bytes), 

SRR741411_2 (7,982,945,875 bytes), Mais 

(2,104,355,422 bytes), Cricetus (2,320,022,665 bytes), 

Pinus (20,547,720,415 bytes) to methodically demonstrate 

Methodology Dataset 

Performance Metrics 

Drawback Compressed  

File Size  
CR 

CT 

(sec) 

DT 

(sec) 

Differential Direct 

Coding (2D) based 

on Dynamic 

Dictionary 

Approach[22] 

Bacillus Subtilis 1376213 3.1061 64631 34741 

Compression time 

is high than 2D 

algorithm 

Escherichia Coil 

K12 MG1655 
1513218 3.1098 70646 37372 

Mycoplasm 

Genitalium G37 
185424 3.1730 8845 4267 

  CR 
CT 

(sec) 

DT 

(sec) 
  

A compression 

method for 

DNA[24] 

NC_017526 75.00 6.004 5.311  

Average 

Decompression 

time is minimized 

by 54%  

NC_002942 75.02 5.351 4.947  

NZ_CP015934 75.05 5.985 5.073  

NZ_CP015935 75.02 5.529 5.733  

NZ_CP015938 75.07 5.133 5.060  

NC_013929 75.17 9.018 17.929  

NC_014318 75.15 9.870 15.742  

NC_010162 75.06 12.564 25.590  

Methodology Dataset 
Performance Metrics 

Drawback 
CR CT(sec) 

Codon Based 

(proposed) 

[29] 

Humhstrop 1.55 0.095  

Humhprtb 1.54 0.115  

Humhbb 1.55 0.156  

Mpomtcg 1.55 0.281  

Vaccg  1.57 0.297  
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the performance of the algorithm. The results of the 

proposed algorithm outperformed zip, gzip, and bzip2 

algorithms. 

Aníbal Guerra et al., (2020) presented UdeACompress, 

a referential compression algorithm to reduce the size of 

FASTQ files. The proposed algorithm works as follows: i) 

First, align the sequences to detect the most appropriate 

read sequence ii) Next, sort the sequence using radix sort 

iii) In the third phase, the sequences are encoded using 

binary map and instruction array techniques iv) Finally, the 

encoded data and unmapped reads are compressed by low 

level compression. The variation in file size was 14% 

smaller compared to the original file. Experimental results 

show that the time taken for execution and amount of 

storage was dramatically reduced and the performance of 

processor was improved [31]. 

 

 

 

 

 

Table 6: Performance Evaluation of Vertical Based Compression Methods 

 

Shubham Chandak et al., (2020) proposed a reference 

free compression technique for FASTQ files named 

SPRING. Two different modes are used precisely, lossless 

mode (default mode) to encode and decode FASTQ files 

with no loss of information and lossy mode where the 

arrangement of pairs and read identifiers are discarded. 

SPRING has achieved better results than other standard 

algorithms [32]. 

Methodology Dataset 
Performance Metrics 

 Drawback 
CR   

Proposed 

Algorithm 

[30] 

LambdaVirus.fa 3.97  

High 

Computational 

cost 

Homo_sapiens.GRCh38dna_sm 4.11  

SRR741411_2 4.02  

Mais 3.91  

Cricetus 4.00  

Pinus 4.01  

  CR CT DT 

Peak memory 

consumption 

 

C D 

UdeACompress[31] 

SRR1282409 7.29 2.8 10.9 10639 9691 High memory 

usage and 

CPU 

requirements. 

Speed is 

sensitive. 

SRR3141946 6.6 3.0 11.5 7578 7030 

DRR000604 8 2.7 11.8 7162 7098 

SRR892505 6.8 1.5 11.1 3449 3680 

SRR892403 7.07 4.7 11.7 3414 3791 

SRR892407 7.3 4.6 11.1 3328 3419 

  
Improvement 

 
 

Lossless Mode Lossy Mode 

SPRING[32] 

Pseudomonas aeruginosa 115 62  

High 

Computational  

requirements 

Metagenomic 3206 1736  

H.sapiens 28901 13460  

H.sapiens 6971 5657  

H.sapiens 25883 20316  

  CR CT DT 
Memory Usage  

C D 

MZPAQ[33] 

SRR554369 7.04 0.98 0.91 2398.8 2383.9 

Minimum 

compression 

ratio gain  

SRR327342 8.49 1.34 1.07 2901.8 2382 

MH0001 7.98 1.33 1.29 2691 2384.1 

SRR1284073 3.22 0.78 0.82 2385.6 2383 

SRR870667 6.27 0.99 0.97 4544.5 2396.3 

ERR174310 5.00 0.83 0.99 5326.4 2383 

  CR CT DT MC   

LFastqC[34] 

SRR001471 5.29 2m00s 2m16s 4  

Does not 

support color 

space 

encoding 

SRR003177 5.15 10m13s 10m43s 4  

SRR003186 4.71 7m15s 7m59s 4  

SRR007215 6.60 6m18s 6m08s 4  

SRR010637 5.30 21m18s 20m59s 4  

SRR013951 3.46 37m20s 35m27s 4  

SRR027520_1 4.28 44m37s 48m27s 4  

SRR027520_2 4.25 46m42s 55m49s 4  
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El Allali and Arshad (2019) developed a special tool 

called MZPAQ for compressing the genomic data in 

FASTQ formats. It amalgamates the features of both 

MFCompress and ZPAQ algorithms. The input sequence is 

alienated into four streams using MZPAQ. Initially, 

MFCompress will encode the read identifier and read 

sequence, next operator plus is removed and finally ZPAQ 

algorithm is applied. The MZPAQ achieved best  

 

 

compression ratio with high speed and reduced memory 

requirements [33]. 

Sultan Al YamiI and Chun-Hsi Huang (2019) proposed 

a lossless non-reference-based FASTQ compressor 

(LFastqC) which is an enhanced version of LFQC tool to 

decrease storage space and transmission time. The tool 

resulted with an enhanced compression ratio when 

compared with other standard algorithms. The compressor 

notably decreased the computation time and obtained an 

average compression ratio. The major drawback is that 

LFastqC does not support color space encoding [34].  

 

6. HYBRID ALGORITHMS 
This section discusses hybrid algorithms for DNA 

sequence compression (Table 7). Secure Compression 

Algorithm for Next Generation Sequencing (SCA-NGS) 

was described by Muhammad Sardaraz and Muhammad 

Tahir (2021). General-purpose compression library is 

utilized to minimize the size of quality score. The method 

enciphered the compressed data by applying crossover and 

mutation genetic algorithm concept. Results show that the 

proposed algorithm achieved better compression ratio of 

5.08, 5.48, 5.82, 4.03, 4.65, 5.48, 5.12 and 4.19 bpb when 

tested with SRR801793 (2818.11), ERR022075 

(11253.16), SRR125858 (52172.64), SRR611141 

(1799.86), SRR489793 (13132.48), SRR935126 

(10039.24), SRR003177 (1672.78) and SRR400039 

(65723.77) datasets respectively [35]. 

Yao et al., (2021) suggested the MtHRCM and 

HadoopHRCM hybrid referential methods. The MtHRCM 

method is based on multi thread parallel technology and 

HadoopHRCM is implemented using distributed 

computing parallel technology. To assess the performance 

of the proposed techniques, four genomic standard datasets 

are chosen namely K131, YH, Huref, and HG00096 from 

1000 Genome Project. The proposed methods reduced the 

file size from 3182 GB to 1322 MB with increased 

computational speed [36]. 

Milton Silva et al., (2020) developed a reference free 

and referential compression called GeCo3. The technique 

was applied to both multiple context model and 

substitution-tolerant context model of several order-depths. 

The algorithm mainly focuses on inputs, updates, outputs, 

and training process of neural networks. GeCo3 achieved 

better compression ratio when compared with other 

standard algorithms but resulted with high computational 

time [37]. 

Zeinab Nazemi Absardi and Reza Javidan (2020) 

proposed an innovative deep neural network based DNA 

sequence compression algorithm using auto encoder. 

Initially, the DNA sequence is preprocessed to achieve 

accurate results. Preprocessing is carried out in three steps. 

1) Convert the characters into lowercase. 2) Delete line 

breaks. 3) Finally, transform non-base characters to 

character ‘n’. The preprocessed data is now encoded using 

three bit encoding scheme. A binary array is generated 

from the binary coded sequences. Using auto-encoder the 

binary array is trained and compressed. The proposed 

technique achieved five times better compression ratio 

with an improved compression accuracy of 92% [38]. 

Wang et al. (2018) developed DeepDNA which 

encompasses Convolutional Neural Network (CNN) and 

Long Short-Term Memory Network (LSTM) to minimize 

the size of genomic data. Machine learning techniques are 

implemented to compress the Human mitochondrial 

genome. The DeepDNA achieved good compression ratio 

of less than 0.05 bpb when compared with Gzip, 

MFCompress, and DMcompress [39]. 

 
Table 7: Performance Evaluation of Hybrid Compression Methods 

Methodology Dataset 
Performance Metrics 

Drawback 
CR CET CEM DDT DDM 

SCA-NGS 

[35] 

SRR801793  5.09 180 1148 58 1331 

Time taken 

for 

encryption is 

high 

ERR022075  5.48 552 1131 305 1528 

SRR125858  4.76 2437 1638 1531 2132 

SRR611141  4.03 102 948 36 1142 

SRR489793  4.65 876 1536 490 1562 

SRR935126  5.33 412 1126 193 1433 

SRR003177  5.12 68 1638 26 1532 

  Compression Size    

MtHRCM/ 

HadoopHRCM 

[36] 

chr1 108.94    

chr2 113.25    

chr3 98.55    

chr4 90.54    

chr5 81.99    

chr6 77.91    

chr7 73.05    
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7. CONCLUSION 
DNA Sequence Compression is a rapidly growing and 

strongly related field to bioinformatics research frontiers. 

It is vital to study the key research issues in bioinformatics 

and develop new algorithms for compressing the DNA 

sequence for efficient analysis. The paper discusses about 

the classification of different lossless DNA sequence 

compression algorithms together with its merits and 

drawbacks. Some algorithms are not able to reduce the size 

of DNA sequences (or not achieve good compression 

ratio). The lossless DNA sequence compression algorithms 

focused include three different directions, namely, 

horizontal mode, vertical mode and hybrid. In each 

direction, different techniques are illustrated along with its 

experimental results such as compression ratio, time taken 

for compression and decompression and memory usage. 

Generally, horizontal mode compression techniques are 

applied to minimize the size of the sequences. 

Alternatively vertical mode compression techniques are 

also used to compress the sequences. Although a broad 

survey on the taxonomy of various lossless DNA sequence 

compression algorithms and their effectiveness is well 

beyond the scope of this survey, the results discussed here 

may give huge idea to readers that many remarkable works 

has been carried out in this analysis. Though DNA 

compression is highly challenging and shows potential 

direction, remarkable results will appear in future 

experiments. 

 

8. REFERENCES 

[1] Ziv, Jacob, and Lempel, A. (1977), A Universal 

Algorithm for Sequential Data Compression, 

IEEE Transactions on Information Theory, Vol. 

23(3), pp. 337-343. 

[2] Ziv, Jacob, and Lempel, A. (1978), Compression 

of Individual Sequences via Variable Rate 

Coding, IEEE Transactions on Information 

Theory, Vol. 24(5), pp. 530-536. 

[3] Cleary, John, G. and Witten, H. (1984), Data 

Compression Using Adaptive Coding and Partial 

String Matching, IEEE Transactions on 

Communications, Vol. 32(4), pp. 396-402. 

[4] Willems, F. M. J., Shtarkov, Y. M., and Tjalkens, 

T. J. (1995), The context tree weighting method: 

Basic properties, IEEE Transaction Information 

Theory, Vol. 41(3), pp. 653-664. 

[5] Gailly, J. and Adler, M. (1992), gzip (GNU zip) 

compression utility. 

[www.gnu.org/software.gzip] website.   

[6] Welch Terry, A. (1984), A technique for high 

performance data compression, IEEE Computer, 

Vol. 17(6), pp. 8-19. 

[7] Julian Seward (1996), bzip2 

[sourceware.org/bzip2] website. 

[8] Neva Cherniavsky and Richard Ladner (2004), 

Grammar-based Compression of DNA 

Sequences, UW CSE Technical Report, pp. 1-21. 

[9] Murugan, A. and Punitha, K. (2021), Pattern 

Matching Compression Algorithm for DNA 

Sequences, Proceeding of the International 

Conference on Sustainable Expert System, Vol. 

176, pp. 387-402. 

chr8 73.56    

chr9 53.31    

chr10 59.18    

chrX 48.86    

chrY 2.07    

  CR Speed    

Execution 

time is high GeCo3[37] 

HSxPT 3.65 296    

HSxPA 6.57 294    

HSxGG 4.96 293    

GGxHS 5.81 301    

  CR CT     

Deep Neural 

Network 

Approach 

[38] 

KOREF_20090224 4.801 16.692    

Training time 

was high  

KOREF_20090131 5.104 17.230    

KOREF_20090224 4.902 27.55    

KOREF_20090131 5.192 28.215    

KOREF_20090224 5.003 39.002    

KOREF_20090131 5.314 39.956    

KOREF_20090224 5.003 42.318    

KOREF_20090131 5.318 43.087    

  CR      

DeepDNA 

[39] 

KF162105.1 0.01      

MF058266.1 0.05      

KC911416.1 0.01      

AY339411.1 0.01      

JQ702777.1 0.04      



 

18 

 

[10] Benson, D. A., Karsch-Mizrachi, I. and Lipman, 

D. J. (2005), GenBank, Nucleic Acids Research, 

Vol. 33, pp. 34-38. 

[11] Murugan, A. and Punitha, K. (2021), A Pattern 

Matching Extended Compression Algorithm for 

DNA Sequences, International Journal of 

Computer Science and Network Security 

(IJCSNS), Vol. 21(8), pp. 196-202. 

[12] Wenwen Cui, Zhaoyang Yu, Zhuangzhuang Liu, 

Gang Wang, and Xiaoguang Liu (2020), 

Compressing Genomic Sequences by Using 

Deep Learning, International Conference on 

Artificial Neural Networks and Machine 

Learning (ICANN), pp. 92-104.  

[13] Diogo Pratas, Morteza Hosseini, and Armando J. 

Pinho (2020), GeCo2: An Optimized Tool for 

Lossless Compression and Analysis of DNA 

Sequences, International conference on 

Advances in Intelligent Systems and Computing, 

Vol. 1005, pp. 137-145. 

[14] Hui Chen (2020), Application of Genome 

Sequence Based on Entropy Coding, 

International Conference on Intelligent 

Computing, Automation and Systems (ICICAS), 

pp. 156-159. 

[15] Deloula Mansouri and Xiaohui Yuan (2018), 

One-Bit DNA Compression Algorithm, 

Proceedings of the International Conference on 

Neural Information Processing, Cambodia, pp. 

376-386. 

[16] Shan E Zahra, Khalid Masood and Muhammad 

Asif (2019), DNA Compression using an 

innovative Index based Coding Algorithm, IEEE 

978-1-7281-4001-8/19.  

[17] Ayad E. Korial and Ali Kamal Taqi (2018), 

Propose a Substitution Model for DNA Data 

Compression, International Journal of Computer 

Applications (0975 – 8887), Vol. 179, pp. 20-26. 

[18] Gede Eka Sulistyawan, I., Achmad Arifin and 

Muhammad Hilman Fatoni (2020), An Adaptive 

BWT-HMM-based Lossless Compression 

System for Genomic Data, International 

Conference on Computer Engineering, Network 

and Intelligent Multimedia(CENIM 2020), pp. 

429-434. 

[19] Sebastian Deorowicz (2020), FQSqueezer: k-mer-

based compression of sequencing data, Scientific 

Reports nature research, 

https://doi.org/10.1038/s41598-020-57452-6. 

[20] Sanjeev kumar, Suneeta Agarwal and Ranvijay 

(2020), WBTC: A new approach for efficient 

storage of genomic data, International Journal of 

Information Technology, Springer, International 

Journal of Information Technology, 

https://doi.org/10.1007/s41870-020-00472-2. 

[21] Vey, G. (2009), Differential Direct Coding: A 

compression algorithm for nucleotide sequence 

data. Database, Vol. 2009, Article ID bap013, 

doi:10.1093/database/bap013. 

[22] Raju Bhukya (2019) Modified Direct Differential 

Coding Using 2D-Dynamic Dictionary for 

Nucleotide Sequence, Bioscience Biotechnology 

Research Communications, Vol. 12(4), pp. 1150-

1158. 

[23] Jothi, S., Chandrasekar, A., and Ranjith, R. 

(2018), Lossless Segment with Lempel-Ziv-

Welch Compression Algorithm Based DNA 

Compression, Taga Journal, Swansea Printing 

Technology Ltd.,    Vol. 14, pp. 1548-1554. 

[24] Shengwang Du, Junyi Li, and Naizheng Bian, A 

compression method for DNA, PLOS ONE, Vol. 

15(11), pp. 1-8. 

[25] Diego Diaz Dominguez and Gonzalo Navarro, A 

grammar compressor for collections of reads 

with applications to the construction of the BWT, 

IEEE DOI: 10.1109/DCC50243.2021.00016. 

[26] Gagie, T., Tomohiro, I., Manzini, G., Navarro, G., 

Sakamoto, H., and Takabatake, Y. (2019), Rpair: 

Rescaling RePair with rsync, in Proc. 26th 

SPIRE, pp. 35-44. 

[27] Ferragina, P., and Manzini, G. (2005), Indexing 

compressed text, J. ACM, Vol. 52(4), pp. 552-

581. 

[28] Gagie, T., Tomohiro, I., Manzini, G., Navarro, G., 

Sakamoto, H., Benkner, L., and Takabatake, Y. 

(2020), Practical random access to SLP-

compressed texts, in Proc. 27th SPIRE, pp. 221-

231. 

[29] Murugesan, G. (2020), Codon Based 

Compression Algorithm for DNA Sequences 

with Two Bit Encoding, European Journal of 

Molecular and Clinical Medicine, ISSN 2515-

8260, Vol. 07(10), pp. 33-41.  

[30] Bruno Carpentieri (2020), Compression of Next-

Generation Sequencing Data and of DNA Digital 

Files, MDPI, Algorithms, Vol. 13 (151), pp. 1-

11. 

[31] Anibal Guerra, Jaime Lotero and Jose Edinson 

Aedo (2020), Tackling the Challenges of FASTQ 

Referential Compression, Bioinformatics and 

Biology Insights, Vol. 13, pp. 1-19. 

[32] Shubham Chandak, Kedar Tatwawadi, Idoia 

Ochoa, Mikel Hernaez, and TsachyWeissman 

(2018), SPRING: A next-generation compressor 

for FASTQ data, Oxford, Bioinformatics, Vol. 

35(15),  pp. 2674-2676. 

[33] Achraf El Allali and Mariam Arshad (2019), 

MZPAQ: A FASTQ data compression tool, 

Source Code for Biology and Medicine, Vol. 

14(3), pp. 1-13. 

[34] Sultan Al Yami and Chun-Hsi Huang (2019), 

LFastqC: A lossless non-reference-based FASTQ 

compressor, PLOS ONE, pp. 1-10. 

[35] Muhammad Sardaraz, and Muhammad Tahir 

(2021), SCA-NGS: Secure Compression 

algorithm for next generation sequencing data 

using genetic operators and block sorting, 

Science Progress, Vol. 104(2),       pp. 1-18.  

https://doi.org/10.1109/DCC50243.2021.00016


 

19 

 

[36] Haichang Yao, Shuai Chen, Shangdong Liu, Kui 

Li, Yimu Ji, Guangyong Hu, and RuchuanWang 

(2021), Parallel compression for large collections 

of genomes, Concurrency Computat. Pract. 

Exper. John Wiley & Sons, Ltd., pp. 1-13. 

[37] Milton Silva, Diogo Pratas, and Armando J. 

Pinho (2020), Efficient DNA sequence 

compression with neural networks, Gigascience, 

Oxford, pp. 1-15. 

[38] Zeinab Nazemi Absardi and Reza Javidan (2019), 

A Fast Reference-Free Genome Compression 

Using Deep Neural Networks, Proceedings of the 

2019 IEEE Conference on Big Data, Knowledge 

and Control Systems Engineering (BdKCSE), 

IEEE 978-1-7281-6481-6/19. 

[39] Rongjie Wang, Tianyi Zang and Yadong Wang 

(2019), Human mitochondrial genome 

compression using machine learning techniques, 

Human Genomics, Vol. 13(1), pp. 1-8. 

 


