

9

 A SURVEY ON DNA SEQUENCE COMPRESSION ALGORITHMS

Arunachalaprabu G. 1, Fathima Bibi K. 2
1Research Scholar in Computer Science, Thanthai Periyar Govt. Arts & Science College (A), Tiruchirappalli

E-mail: guruarun12@gmail.com
2Assistant Professor in Computer Science, Thanthai Periyar Govt. Arts & Science College (A), Tiruchirappalli

E-mail: kfatima72@gmail.com

Abstract. Deoxyribonucleic Acid (DNA) plays a major role in

the development, growth and reproduction of all living

organisms. Due to the recent development of scientific researches

in biology, virology and medicine public databases are over

flooded with enormous amount of DNA data. It not only faces

severe challenges like storage but also restricts transmission

capacity and retrieval process. Lossless DNA Compression is

used to reduce the size of data, improve the capacity of storage

medium and henceforth vast amount of data can be transmitted at

any given time. There are many existing lossless DNA

compression algorithms most of them of which are not suitable

for compressing the DNA data. In addition, the development of

compression algorithms that help to reduce the size of DNA data

is rather a difficult task. This paper discusses the recent

researches on various lossless compression algorithms. Reviews

on standard algorithms are briefed. The study shows that

compression of DNA sequence is vital for understanding the

essential characteristics of DNA data. Two major categories

namely, horizontal mode and vertical mode are focused. A

comparative study about the notions of the different modes of

DNA compression algorithms is analysed. To evaluate the

performance of DNA compression algorithms commonly used

metrics such as compression ratio, saving percentage and time

taken for compression and decompression were used. An outline

of some research problems that assist for further development of

effective compression algorithms for DNA data and the scope for

future enhancement are also discussed.

Keywords: Bioinformatics, Deoxyribonucleic Acid, Horizontal

mode, Vertical mode, Compression Ratio.

1. INTRODUCTION
Bioinformatics is a broad multi-disciplinary field that

aims to solve biological problems using Deoxyribonucleic

Acid and other related information. Deoxyribonucleic

Acid, or DNA, is a long, linear vital molecule of living

organisms. The primary structure of DNA molecule is a

double helix strand made up of four molecules or bases

namely, Adenine (A), Cytosine (C), Guanine (G), and

Thymine (T).

A DNA sequence is an elongated string which

comprises a set of consecutive bases (Example: chmpxx

sequence -

TTGAACGAGAAGCCGTATGAAATGAAAATAT).

Many researches in bioinformatics focus on the study of

DNA sequences based on their functions and features. For

instance, diseased DNA sequences are compared with

healthiest ones to detect the major differences between

them. Besides, the DNA sequences are analyzed to identify

similarity between patterns. For these reasons, huge

amount of DNA sequences are stored in databases. When

the length of the DNA sequence increase rapidly, storage

and transmission become significantly harder. In addition,

it causes a major issue for many analysis tasks owing to its

high memory usage and cost for computation.

Compression is an effective way for reducing the size

of DNA sequence. The basic concept behind compression

is to reduce the number of bits needed to store DNA

sequences as they can lead to improved storage capacity

and minimum network traffic. The need for compression

algorithms and expertise has increased as Genome Projects

resulted in an exponential growth in DNA databases. With

years of research and development, there are several DNA

compression algorithms available to reduce the size of

DNA sequence. Compression algorithms are primarily of

two types: Lossy and lossless.

 Lossy involves loss of information.

 Lossless results in no loss of information.

There are many situations that require compression where

the reconstruction is to be identical to the original. In

addition, there are also numerous situations in which it is

not possible to relax this requirement. This opens a

challenging question in research fields, such as how to

reduce the size of DNA sequence without sacrificing loss

of information. Therefore, lossless compression algorithms

that best approximate the original dataset with reduced

storage cost are likely to play an important role in DNA

sequence compression.

The paper presents a general study of DNA

compression algorithms that have been useful to reduce the

length of the DNA sequences. Most text compression

algorithms have focused on the compression of DNA

sequences. However, DNA sequences often consist of

many repeated and non-repeated bases. It is not easy to

compress DNA sequence with good compression ratio

using text compression algorithms. Some interesting

compression algorithms include LZ77 (Ziv and Lempel,

77), LZ78, Prediction with Partial Match (PPM), Context

Tree Weighting (CTW), GNU zip (GZip), Compress

method and Bzip2. LZ77 retains a dictionary in which

previously encoded input stream is stored. Sliding window

method is used to examine the input stream. It is divided

into two buffers: 1) Search buffer – holds recently encoded

stream and 2) Look-ahead buffer – holds next segment of

the stream to be encoded. At the decoding phase, a buffer

is maintained equal in size to the encoder’s window. A

good compression ratio is achieved for many sequences.

Though it requires less amount of memory more time was

taken to encode the sequences [1]. LZ78 (Ziv and Lempel,

1978) uses dictionary for both encoder and decoder instead

of any search buffer, look-ahead buffer or sliding window

[2]. PPM method (Cleary and Witten, 1984) compresses

the DNA sequences with compression ratio greater than

two bits per base (bpb) [3]. CTW (Willems et al., 1995) is

10

suitable to compress the DNA sequences below 2 bpb [4].

GZip (Jean-loup Gailly and Mark Adler, 1992) uses

adaptive Lempel-Ziv coding to compress the named files

in deflate mode [5]. The performance of Compress method

(Terry Welch, 1984) based on LZW coding is high with

minimum memory requirements. Nevertheless, the

compression ratio of compress method is significantly low

[6]. In Bzip2 (Julian Seward, 1996), Burrows-Wheeler

block sorting technique and Huffman coding are used to

reduce the size of files [7]. However, most traditional

compression algorithms have not achieved good

compression results.

The paper is organized as follows: Section 2

categorizes the different DNA sequence compression

techniques. The formulae of the commonly used

performance metrics are shown in Section 3. Section 4

describes the recent horizontal mode DNA sequence

compression algorithms. Reviews of vertical mode DNA

sequence compression algorithms are discussed in Section

5. Experimental results of hybrid algorithms are shown in

Section 6. Finally, Section 7 summarizes the different

lossless DNA sequence compression algorithms.

2. TAXONOMY OF DNA SEQUENCE

COMPRESSION TECHNIQUES
This section gives an overview of the techniques

reviewed in DNA sequence compression algorithms. The

classification of different DNA sequence compression

algorithms are shown in Figure 1. DNA compression

algorithms are classically split into two common methods:

Horizontal mode and Vertical mode.

Figure 1: Taxonomy of DNA Compression Techniques

2.1 HORIZONTAL MODE

The horizontal mode compresses a sequence based on

its information i.e., sequences are compressed

successively. Broadly speaking, horizontal mode

compression algorithms are divided into the following

categories:

 Substitutional based methods – A dictionary of frequently

appearing bases is maintained and when these bases appear

in the sequence they are replaced by the codeword in

dictionary.

 Statistical based methods – Variable size short codes are

assigned to frequently appearing bases or set of bases in

the sequence.

 Substitutional and Statistical based methods – Features of

both substitutional and statistical methods are used to

encode the sequence.

 Transformational based methods – Transformations takes

place in the actual sequence and compression is applied

only on the transformed sequence.

 Grammar based methods – Compresses a text string using

context-free grammar. The compressed string is encoded

by a symbol which in turn is converted to binary [8].

 Two-bit based methods – Unique binary bits are assigned

for the bases (A = 00, C = 01, G = 10, and T = 11).

2.2 VERTICAL MODE
The vertical mode works by using the information

stuck between two sequences by referring to the

information contained in only one of the sequence.

3. PERFORMANCE METRICS
The effectiveness of a compression algorithm can be

evaluated in various ways:

3.1 COMPRESSION RATIO (CR)
The compression ratio is the ratio between compressed file

size and original file size. Compression ratio is formally

expressed in bpb or bits per character (bpc).

11

CR = Compressed file size / Original file size

3.2 COMPRESSION FACTOR (CF)
The compression factor is the ratio between original file

size and compressed file size. Compression factor is the

inverse of compression ratio.

CF = Original file size / Compressed file size

3.3 SAVING PERCENTAGE (SP)
Saving percentage is the difference between original file

size and compressed file size to the size of original file.

SP = (Original file size -Compressed file size) /

Original file size

3.4 COMPRESSION TIME
Compression time refers to the amount of time, in

milliseconds, needed to compress the file.

3.5 DECOMPRESSION TIME
Decompression time refers to the time required to

decompress the compressed file to its original form.

Decompression time is expressed in milliseconds.

4. HORIZONTAL MODE ALGORITHMS
With sophisticated DNA compression tasks, there is much

opportunity for research and development of advanced,

effectual, and scalable horizontal mode DNA compression

methods in bio-informatics. Some interesting methods are:

4.1 SUBSTITUTIONAL BASED METHODS
Most compression algorithms are based on

substitutional based methods. Murugan and Punitha,

(2021) have designed a Pattern Matching Extended

Compression Algorithm (PMECA) to compress the DNA

sequence. PMECA is the extension of improved-compress

algorithm [9]. First, it scans segments of the sequence and

identifies identical patterns. Based on the number of bases,

the patterns are stored in dictionary either in permanent or

temporary manner. Matchless patterns are converted and

grouped into zeros and ones. Standard datasets taken from

GenBank of National Center for Biotechnology

Information (NCBI) [10] was used for analysis. The

algorithm resulted with a compression ratio of 91%.

Simulation results have shown significant improvement of

speed and reduction in file size over existing algorithms

[11].

Cui et al., (2020) proposed a new approach using deep

learning and arithmetic coding. In the preprocessing step,

sliding window of the sequence was transformed into

vectors. The local and global features are mined using

Convolutional Neural Network (CNN) and Bi-directional

Long Short-Term Memory Networks (BiLSTM) model.

The algorithm is 3.7 times better compared to DeepDNA

[12].

GeCo2 tool is an enhanced version of GeCo tool

developed by Pratas et al., (2020) [13]. The genomic

sequences compressed using this method are combined

with cache-hash sizes, inverted repeats, interface for

command line, novel pre-computed levels, and different

code optimizations. The algorithm resulted with 0.2142%

saving percentage when compared with GeCo.

Hui Chen (2020) suggested a genome sequence

compression algorithm using entropy coding technique

based on context modeling. The sequences are divided and

transformed into four clusters, namely, coding sequence

cluster, intron cluster, RNA cluster and residual cluster.

Each set will be arranged corresponding to certain

characteristics of the sequences which are encoded using

entropy coding technique. The method was tested with

benchmark datasets taken from US Genbank database. The

algorithm resulted with an average compression ratio of

1.72 bpb [14].

Mansouri et al., (2020) described a novel lossless DNA

Compression Algorithm based on Single-Block Encoding

Scheme (DNAC-SBE). There are three phases namely, i)

One-Bit Method Phase – position of bases with high

frequencies is replaced by ones and others by zeros. ii)

Single-Block Encoding Phase – encodes the generated

streams and iii) Third Phase – assigns shortest codeword

for each block dynamically. It is observed that DNAC-

SBE has outperformed the other DNA sequence

compression algorithms [15].

Shan E Zahra et al., (2019) [16] presented the Run

Length Index Based Coding (RLIBC) algorithm. The basic

steps are: 1) Remove all redundant DNA sequence from

the input genomic dataset and store its index number 2)

Perform segmentation process on each segment 3) Finally,

compare each segment with index and transform the index

number into binary code. When compared with other

algorithms RLIBC has achieved an average compression

ratio of 1.75 bpb and average compression factor of

5.7311. Data savings is 82.6% and average time taken for

compression and decompression is one second.

Ayad E. Korial and Ali Kamal Taqi (2018) proposed a

novel technique A2 to reduce the file size. The algorithm

consists of four stages to make the substitutional model.

The first stage is a modified version of Run Length

Encoding which generates a symbol. The next two stages

perform pre-mapping and post-mapping and the final stage

develops a permutation technique using Burrows-Wheeler

Transform (BWT) method. The algorithm achieved better

compression ratio and saving storage space when

compared with GenCompress [17]. The results of the

various substitutional based compression methods are

given in Table 1.

Table 1: Performance Evaluation of Substitutional Based Compression Methods

Methodology Dataset
Performance Metrics

Drawback
Saving Percentage CT(sec)

PMECA[11] Humhdystrop 93 1.1

12

Humghcsa 90 2.1

Humhbb 90 2.4

Humhdabcd 91 1.9

Humhprtb 90 1.6

 CR(bpb)

Deep Learning

Model[12]

Fish 0.70

Birds 0.66

Human 0.01

Ray-finned fishes 0.81

 No. of bytes needed CT(sec)

GeCo2[13]

HoSa 38845642 652.4

GaGa 33877671 494.7

DaRe 11488819 198.8

OrSa 8646543 138.3

DrMe 7481093 102.4

EnIn 5170889 82.5

ScPo 2518963 34.2

PlFa 1925726 35.3

EsCo 1098552 5.1

HaHi 902831 4.4

AeCa 380115 1.9

HePy 375481 1.9

 CR(bpb) CT(sec)

Entropy Coding

Technique[14]

Chmpxx 1.5788 2.06

High compression time

Chntxx 1.5891 1.56

Humhprtb 1.8532 0.57

Humhbb 1.8318 0.92

Vaccg 1.7788 3.13

 CR(bpb)

DNAC-SBE[15]

Chmpxx 1.604

Does not accept

any other data

Humhstrop 1.724

Humhbb 1.717

Humhcvcg 1.741

Mpomtcg 1.721

Vaccg 1.671

Mtpacga 1.650

Humhrtb 1.720

Percentage of

Reduction

DNAC-SBE[15]

NC_017526 23.61

Does not

accept any

other data

NC_017652 22.06

Ce10 28.98

sacCer3 25.53

Eukaryotic 19.71

 C-Size C-Mem D-Mem CT DT

DNAC-SBE[15]

NC_017526 0.55 36.71 64.31 1.78 1.24

Does not

accept any

other data

NC_017652 01.06 49.03 101.45 1.67 1.27

sacCer3 02.48 5.09 13.54 26.57 9.71

Ce10 19.75 68.75 212.75 73.13 45.04

Chimpanzee 570.73 522.23 729.9 1445.15 1155.97

Korea2009024 577.23 649.56 703.69 1479.57 1003.27

Eukaryotic 423.32 1859.00 1349.05 1117.44 903.1

 CR(bpb) Reduction to %

RLIBC[16] Humhstrop 1.400258 82.49678

13

4.2 STATISTICAL BASED METHODS
Statistical based compression methods are much

familiar methods for reducing DNA sequences. Gede Eka

Sulistyawan et al., (2020) have suggested a compression

system which combines Burrows Wheeler Transform and

Hidden Markov Model namely BWT-HMM. BWT was

applied to restructure the DNA data which generates

numerous redundant bases. The DNA data are segmented

according to a single DNA base repeat. Re-estimation

algorithm was used to reduce the storage space. The

methodology was tested with DNA datasets taken from

NCBI. Performance metrics such as compression ratio and

time taken for computation were calculated. The proposed

algorithm resulted with 4.276 bpb compression ratio with

an improved mean compression ratio of 4.004 [18].

Sebastian Deorowicz (2020) introduced FQSqueezer

that utilizes partial matching and dynamic Markov coder

algorithms for genomic data compression.

Experimentation results (Table 2) have shown that this

algorithm has achieved better compression ratio for

standard benchmark datasets [19].

Table 2: Performance Evaluation of Statistical Based Compression Methods

4.3 SUBSTITUTIONAL AND STATISTICAL

BASED METHODS
It is a hybrid method that combines both substitutional

and statistical approaches. Word based compression

technique (Sanjeev Kumar et al., (2020)) compresses the

genomic data using Modified Word Based Tag Code

(MWBTC) and Delta Coding. Tests were conducted using

FNA, FEN, Camera, and Eukaryotic datasets. The

proposed algorithm helps to search DNA sequence devoid

of decompression. When compared to LZMA and

Seqcompress more than 20% to 30% better results were

obtained (Table 3) [20].

Table 3: Performance Evaluation of Substitutional and Statistical Based Compression Methods

4. 4 TRANSFORMATIONAL BASED METHODS
In transformational methods the DNA sequence is

transformed to a specific form before compression to attain

good compression ratio. Raju Bhukya (2019) developed a

Differential Direct (2D) coding method based on dynamic

dictionary approach. The approach works on triplets of

DNA sequence bases and patterns of length multiples of

three. The dictionary table of 2D coding bifurcates into

two parts: i) Static part and ii) Dynamic part. The

performance of the algorithm when compared with

existing 2D algorithm [21] gave minimum compression

ratio with reduced computational time [22].

Jothi et al., (2018) described a lossless segment

compression algorithm using Lempel-Ziv Welch technique

to reduce the size of DNA sequences. The architecture

consists of four parts: a) Upload the DNA sequences b)

Humhdabcd 1.414107 82.32366

Humhbb 1.409723 82.37846

Mpomtcg 1.369194 82.88507

Vaccg 1.406292 82.42147

 Compression Size Speed CT(sec)

A2[17]

gbbct45 20.9 0.453 MB/sec 196

gbbct108 19.1 0.455 MB/sec 195

gbvrt9 1.70 0.456 MB/sec 17

Methodology Dataset

Performance Metrics

Drawback
C-RAM D-RAM

CT

(sec)

DT

(sec)

FQSqueezer

[19]

ERR174310_1 91.6 90.6 12728 13100

High memory

usage and time

ERR532393_1 16.4 16.4 1344 1452

SRR327342_1 6.7 6.6 144 145

SRR554369_1 6.2 6.2 68 70

SRR635193_1 12.1 12.1 456 462

SRR689233_1 11.7 11.6 406 413

SRR870667_1 36.4 36.1 4127 4432

SRR1265495_1 13.2 13.1 658 685

SRR1265496_1 13.0 13.0 609 652

Methodology Dataset
Performance Metrics

Drawback
PCR C-Memory D-Memory CT DT

WBCT[20]

FNA 21.52 356.89 50.78 1593 1357
Memory usage of

LZMA is less

compared to WBTC

FEN 20.03 351.25 30.21 1321 1087

Camera 10.02 98.59 24.62 786 627

Eukaryotic 19.76 99.33 23.69 649 574

14

Organize the sequences c) Check relationship between two

random sequences d) Compress the sequences using LZW

technique. The proposed algorithm resulted with an

improved compression ratio when compared to Extended

ASCII algorithm, Modified RLE algorithm and

COMRAD. Experimental results have shown that huge

amount of time is required to arrange the sequences [23].

Shengwang Du et al., (2020) designed a compression

method where the bases are converted to standard

characters in first phase. The characters are compressed

using LZ77 algorithm in the subsequent phase. Ten

genomes of size 1 to 15M taken from NCBI database were

used for testing. The performance of the proposed

algorithm was measured using standard metrics such as

compression ratio, compression time and decompression

time. The time taken for compression and decompression

is 83% and 54% respectively [24]. Table 4 gives the

performance evaluation of the reviewed transformational

based compression methods.

Table 4: Performance Evaluation of Transformational Based Compression Methods

4.5 GRAMMAR BASED METHODS

In grammar based methods, context-free grammar is

applied on DNA sequences. The grammars are

transformed into a set of symbols and finally encoded into

binary form. Diego Diaz-Dominguez and Gonzalo Navarro

(2020) [25] suggested a grammar based algorithm for

collection of reads to construct BWT. The collection of

reads is stored as grammar to compute BWT with the

support of self-indexes. The method resulted with an

average compression ratio of 4.83 bpb. The study have

shown that the proposed algorithm outperformed other

results such as Big Repair [26], Full-text index in Minutes

Space (FM-index) [27] and Run-Length FM (RLFM) [28].

4.6 TWO-BIT BASED METHODS

In two-bit based methods the bases A, C, G and T are

encoded by four distinct two-bit binary values 00, 01, 10

and 11. Murugesan (2020) described a novel Codon based

compression algorithm [29] based on two bit binary

substitution technique. Additional dictionary is not

employed to compress or decompress the genome

sequence and hence additional memory is not required.

Experimental results (Table 5) have shown an average

compression ratio of 1.59 bpb with an average

compression time of 0.18 seconds.

Table 5: Performance Evaluation of Transformational Based Compression Methods

5. VERTICAL MODE ALGORITHMS
This section reviews works that has focused on lossless

DNA sequence compression algorithms based on vertical

mode (Table 6). Bruno Carpentieri (2020) described a next

generation sequencing data compression algorithm [30] to

encode the DNA sequence using two bit encoding

technique. The algorithm was tested using six DNA files

namely, Lambda Virus (48,502 bytes), Homo

sapiens.GRCh38.dna (3,072,712,323 bytes),

SRR741411_2 (7,982,945,875 bytes), Mais

(2,104,355,422 bytes), Cricetus (2,320,022,665 bytes),

Pinus (20,547,720,415 bytes) to methodically demonstrate

Methodology Dataset

Performance Metrics

Drawback Compressed

File Size
CR

CT

(sec)

DT

(sec)

Differential Direct

Coding (2D) based

on Dynamic

Dictionary

Approach[22]

Bacillus Subtilis 1376213 3.1061 64631 34741

Compression time

is high than 2D

algorithm

Escherichia Coil

K12 MG1655
1513218 3.1098 70646 37372

Mycoplasm

Genitalium G37
185424 3.1730 8845 4267

 CR
CT

(sec)

DT

(sec)

A compression

method for

DNA[24]

NC_017526 75.00 6.004 5.311

Average

Decompression

time is minimized

by 54%

NC_002942 75.02 5.351 4.947

NZ_CP015934 75.05 5.985 5.073

NZ_CP015935 75.02 5.529 5.733

NZ_CP015938 75.07 5.133 5.060

NC_013929 75.17 9.018 17.929

NC_014318 75.15 9.870 15.742

NC_010162 75.06 12.564 25.590

Methodology Dataset
Performance Metrics

Drawback
CR CT(sec)

Codon Based

(proposed)

[29]

Humhstrop 1.55 0.095

Humhprtb 1.54 0.115

Humhbb 1.55 0.156

Mpomtcg 1.55 0.281

Vaccg 1.57 0.297

15

the performance of the algorithm. The results of the

proposed algorithm outperformed zip, gzip, and bzip2

algorithms.

Aníbal Guerra et al., (2020) presented UdeACompress,

a referential compression algorithm to reduce the size of

FASTQ files. The proposed algorithm works as follows: i)

First, align the sequences to detect the most appropriate

read sequence ii) Next, sort the sequence using radix sort

iii) In the third phase, the sequences are encoded using

binary map and instruction array techniques iv) Finally, the

encoded data and unmapped reads are compressed by low

level compression. The variation in file size was 14%

smaller compared to the original file. Experimental results

show that the time taken for execution and amount of

storage was dramatically reduced and the performance of

processor was improved [31].

Table 6: Performance Evaluation of Vertical Based Compression Methods

Shubham Chandak et al., (2020) proposed a reference

free compression technique for FASTQ files named

SPRING. Two different modes are used precisely, lossless

mode (default mode) to encode and decode FASTQ files

with no loss of information and lossy mode where the

arrangement of pairs and read identifiers are discarded.

SPRING has achieved better results than other standard

algorithms [32].

Methodology Dataset
Performance Metrics

 Drawback
CR

Proposed

Algorithm

[30]

LambdaVirus.fa 3.97

High

Computational

cost

Homo_sapiens.GRCh38dna_sm 4.11

SRR741411_2 4.02

Mais 3.91

Cricetus 4.00

Pinus 4.01

 CR CT DT

Peak memory

consumption

C D

UdeACompress[31]

SRR1282409 7.29 2.8 10.9 10639 9691 High memory

usage and

CPU

requirements.

Speed is

sensitive.

SRR3141946 6.6 3.0 11.5 7578 7030

DRR000604 8 2.7 11.8 7162 7098

SRR892505 6.8 1.5 11.1 3449 3680

SRR892403 7.07 4.7 11.7 3414 3791

SRR892407 7.3 4.6 11.1 3328 3419

Improvement

Lossless Mode Lossy Mode

SPRING[32]

Pseudomonas aeruginosa 115 62

High

Computational

requirements

Metagenomic 3206 1736

H.sapiens 28901 13460

H.sapiens 6971 5657

H.sapiens 25883 20316

 CR CT DT
Memory Usage

C D

MZPAQ[33]

SRR554369 7.04 0.98 0.91 2398.8 2383.9

Minimum

compression

ratio gain

SRR327342 8.49 1.34 1.07 2901.8 2382

MH0001 7.98 1.33 1.29 2691 2384.1

SRR1284073 3.22 0.78 0.82 2385.6 2383

SRR870667 6.27 0.99 0.97 4544.5 2396.3

ERR174310 5.00 0.83 0.99 5326.4 2383

 CR CT DT MC

LFastqC[34]

SRR001471 5.29 2m00s 2m16s 4

Does not

support color

space

encoding

SRR003177 5.15 10m13s 10m43s 4

SRR003186 4.71 7m15s 7m59s 4

SRR007215 6.60 6m18s 6m08s 4

SRR010637 5.30 21m18s 20m59s 4

SRR013951 3.46 37m20s 35m27s 4

SRR027520_1 4.28 44m37s 48m27s 4

SRR027520_2 4.25 46m42s 55m49s 4

16

El Allali and Arshad (2019) developed a special tool

called MZPAQ for compressing the genomic data in

FASTQ formats. It amalgamates the features of both

MFCompress and ZPAQ algorithms. The input sequence is

alienated into four streams using MZPAQ. Initially,

MFCompress will encode the read identifier and read

sequence, next operator plus is removed and finally ZPAQ

algorithm is applied. The MZPAQ achieved best

compression ratio with high speed and reduced memory

requirements [33].

Sultan Al YamiI and Chun-Hsi Huang (2019) proposed

a lossless non-reference-based FASTQ compressor

(LFastqC) which is an enhanced version of LFQC tool to

decrease storage space and transmission time. The tool

resulted with an enhanced compression ratio when

compared with other standard algorithms. The compressor

notably decreased the computation time and obtained an

average compression ratio. The major drawback is that

LFastqC does not support color space encoding [34].

6. HYBRID ALGORITHMS
This section discusses hybrid algorithms for DNA

sequence compression (Table 7). Secure Compression

Algorithm for Next Generation Sequencing (SCA-NGS)

was described by Muhammad Sardaraz and Muhammad

Tahir (2021). General-purpose compression library is

utilized to minimize the size of quality score. The method

enciphered the compressed data by applying crossover and

mutation genetic algorithm concept. Results show that the

proposed algorithm achieved better compression ratio of

5.08, 5.48, 5.82, 4.03, 4.65, 5.48, 5.12 and 4.19 bpb when

tested with SRR801793 (2818.11), ERR022075

(11253.16), SRR125858 (52172.64), SRR611141

(1799.86), SRR489793 (13132.48), SRR935126

(10039.24), SRR003177 (1672.78) and SRR400039

(65723.77) datasets respectively [35].

Yao et al., (2021) suggested the MtHRCM and

HadoopHRCM hybrid referential methods. The MtHRCM

method is based on multi thread parallel technology and

HadoopHRCM is implemented using distributed

computing parallel technology. To assess the performance

of the proposed techniques, four genomic standard datasets

are chosen namely K131, YH, Huref, and HG00096 from

1000 Genome Project. The proposed methods reduced the

file size from 3182 GB to 1322 MB with increased

computational speed [36].

Milton Silva et al., (2020) developed a reference free

and referential compression called GeCo3. The technique

was applied to both multiple context model and

substitution-tolerant context model of several order-depths.

The algorithm mainly focuses on inputs, updates, outputs,

and training process of neural networks. GeCo3 achieved

better compression ratio when compared with other

standard algorithms but resulted with high computational

time [37].

Zeinab Nazemi Absardi and Reza Javidan (2020)

proposed an innovative deep neural network based DNA

sequence compression algorithm using auto encoder.

Initially, the DNA sequence is preprocessed to achieve

accurate results. Preprocessing is carried out in three steps.

1) Convert the characters into lowercase. 2) Delete line

breaks. 3) Finally, transform non-base characters to

character ‘n’. The preprocessed data is now encoded using

three bit encoding scheme. A binary array is generated

from the binary coded sequences. Using auto-encoder the

binary array is trained and compressed. The proposed

technique achieved five times better compression ratio

with an improved compression accuracy of 92% [38].

Wang et al. (2018) developed DeepDNA which

encompasses Convolutional Neural Network (CNN) and

Long Short-Term Memory Network (LSTM) to minimize

the size of genomic data. Machine learning techniques are

implemented to compress the Human mitochondrial

genome. The DeepDNA achieved good compression ratio

of less than 0.05 bpb when compared with Gzip,

MFCompress, and DMcompress [39].

Table 7: Performance Evaluation of Hybrid Compression Methods

Methodology Dataset
Performance Metrics

Drawback
CR CET CEM DDT DDM

SCA-NGS

[35]

SRR801793 5.09 180 1148 58 1331

Time taken

for

encryption is

high

ERR022075 5.48 552 1131 305 1528

SRR125858 4.76 2437 1638 1531 2132

SRR611141 4.03 102 948 36 1142

SRR489793 4.65 876 1536 490 1562

SRR935126 5.33 412 1126 193 1433

SRR003177 5.12 68 1638 26 1532

 Compression Size

MtHRCM/

HadoopHRCM

[36]

chr1 108.94

chr2 113.25

chr3 98.55

chr4 90.54

chr5 81.99

chr6 77.91

chr7 73.05

17

7. CONCLUSION
DNA Sequence Compression is a rapidly growing and

strongly related field to bioinformatics research frontiers.

It is vital to study the key research issues in bioinformatics

and develop new algorithms for compressing the DNA

sequence for efficient analysis. The paper discusses about

the classification of different lossless DNA sequence

compression algorithms together with its merits and

drawbacks. Some algorithms are not able to reduce the size

of DNA sequences (or not achieve good compression

ratio). The lossless DNA sequence compression algorithms

focused include three different directions, namely,

horizontal mode, vertical mode and hybrid. In each

direction, different techniques are illustrated along with its

experimental results such as compression ratio, time taken

for compression and decompression and memory usage.

Generally, horizontal mode compression techniques are

applied to minimize the size of the sequences.

Alternatively vertical mode compression techniques are

also used to compress the sequences. Although a broad

survey on the taxonomy of various lossless DNA sequence

compression algorithms and their effectiveness is well

beyond the scope of this survey, the results discussed here

may give huge idea to readers that many remarkable works

has been carried out in this analysis. Though DNA

compression is highly challenging and shows potential

direction, remarkable results will appear in future

experiments.

8. REFERENCES

[1] Ziv, Jacob, and Lempel, A. (1977), A Universal

Algorithm for Sequential Data Compression,

IEEE Transactions on Information Theory, Vol.

23(3), pp. 337-343.

[2] Ziv, Jacob, and Lempel, A. (1978), Compression

of Individual Sequences via Variable Rate

Coding, IEEE Transactions on Information

Theory, Vol. 24(5), pp. 530-536.

[3] Cleary, John, G. and Witten, H. (1984), Data

Compression Using Adaptive Coding and Partial

String Matching, IEEE Transactions on

Communications, Vol. 32(4), pp. 396-402.

[4] Willems, F. M. J., Shtarkov, Y. M., and Tjalkens,

T. J. (1995), The context tree weighting method:

Basic properties, IEEE Transaction Information

Theory, Vol. 41(3), pp. 653-664.

[5] Gailly, J. and Adler, M. (1992), gzip (GNU zip)

compression utility.

[www.gnu.org/software.gzip] website.

[6] Welch Terry, A. (1984), A technique for high

performance data compression, IEEE Computer,

Vol. 17(6), pp. 8-19.

[7] Julian Seward (1996), bzip2

[sourceware.org/bzip2] website.

[8] Neva Cherniavsky and Richard Ladner (2004),

Grammar-based Compression of DNA

Sequences, UW CSE Technical Report, pp. 1-21.

[9] Murugan, A. and Punitha, K. (2021), Pattern

Matching Compression Algorithm for DNA

Sequences, Proceeding of the International

Conference on Sustainable Expert System, Vol.

176, pp. 387-402.

chr8 73.56

chr9 53.31

chr10 59.18

chrX 48.86

chrY 2.07

 CR Speed

Execution

time is high GeCo3[37]

HSxPT 3.65 296

HSxPA 6.57 294

HSxGG 4.96 293

GGxHS 5.81 301

 CR CT

Deep Neural

Network

Approach

[38]

KOREF_20090224 4.801 16.692

Training time

was high

KOREF_20090131 5.104 17.230

KOREF_20090224 4.902 27.55

KOREF_20090131 5.192 28.215

KOREF_20090224 5.003 39.002

KOREF_20090131 5.314 39.956

KOREF_20090224 5.003 42.318

KOREF_20090131 5.318 43.087

 CR

DeepDNA

[39]

KF162105.1 0.01

MF058266.1 0.05

KC911416.1 0.01

AY339411.1 0.01

JQ702777.1 0.04

18

[10] Benson, D. A., Karsch-Mizrachi, I. and Lipman,

D. J. (2005), GenBank, Nucleic Acids Research,

Vol. 33, pp. 34-38.

[11] Murugan, A. and Punitha, K. (2021), A Pattern

Matching Extended Compression Algorithm for

DNA Sequences, International Journal of

Computer Science and Network Security

(IJCSNS), Vol. 21(8), pp. 196-202.

[12] Wenwen Cui, Zhaoyang Yu, Zhuangzhuang Liu,

Gang Wang, and Xiaoguang Liu (2020),

Compressing Genomic Sequences by Using

Deep Learning, International Conference on

Artificial Neural Networks and Machine

Learning (ICANN), pp. 92-104.

[13] Diogo Pratas, Morteza Hosseini, and Armando J.

Pinho (2020), GeCo2: An Optimized Tool for

Lossless Compression and Analysis of DNA

Sequences, International conference on

Advances in Intelligent Systems and Computing,

Vol. 1005, pp. 137-145.

[14] Hui Chen (2020), Application of Genome

Sequence Based on Entropy Coding,

International Conference on Intelligent

Computing, Automation and Systems (ICICAS),

pp. 156-159.

[15] Deloula Mansouri and Xiaohui Yuan (2018),

One-Bit DNA Compression Algorithm,

Proceedings of the International Conference on

Neural Information Processing, Cambodia, pp.

376-386.

[16] Shan E Zahra, Khalid Masood and Muhammad

Asif (2019), DNA Compression using an

innovative Index based Coding Algorithm, IEEE

978-1-7281-4001-8/19.

[17] Ayad E. Korial and Ali Kamal Taqi (2018),

Propose a Substitution Model for DNA Data

Compression, International Journal of Computer

Applications (0975 – 8887), Vol. 179, pp. 20-26.

[18] Gede Eka Sulistyawan, I., Achmad Arifin and

Muhammad Hilman Fatoni (2020), An Adaptive

BWT-HMM-based Lossless Compression

System for Genomic Data, International

Conference on Computer Engineering, Network

and Intelligent Multimedia(CENIM 2020), pp.

429-434.

[19] Sebastian Deorowicz (2020), FQSqueezer: k-mer-

based compression of sequencing data, Scientific

Reports nature research,

https://doi.org/10.1038/s41598-020-57452-6.

[20] Sanjeev kumar, Suneeta Agarwal and Ranvijay

(2020), WBTC: A new approach for efficient

storage of genomic data, International Journal of

Information Technology, Springer, International

Journal of Information Technology,

https://doi.org/10.1007/s41870-020-00472-2.

[21] Vey, G. (2009), Differential Direct Coding: A

compression algorithm for nucleotide sequence

data. Database, Vol. 2009, Article ID bap013,

doi:10.1093/database/bap013.

[22] Raju Bhukya (2019) Modified Direct Differential

Coding Using 2D-Dynamic Dictionary for

Nucleotide Sequence, Bioscience Biotechnology

Research Communications, Vol. 12(4), pp. 1150-

1158.

[23] Jothi, S., Chandrasekar, A., and Ranjith, R.

(2018), Lossless Segment with Lempel-Ziv-

Welch Compression Algorithm Based DNA

Compression, Taga Journal, Swansea Printing

Technology Ltd., Vol. 14, pp. 1548-1554.

[24] Shengwang Du, Junyi Li, and Naizheng Bian, A

compression method for DNA, PLOS ONE, Vol.

15(11), pp. 1-8.

[25] Diego Diaz Dominguez and Gonzalo Navarro, A

grammar compressor for collections of reads

with applications to the construction of the BWT,

IEEE DOI: 10.1109/DCC50243.2021.00016.

[26] Gagie, T., Tomohiro, I., Manzini, G., Navarro, G.,

Sakamoto, H., and Takabatake, Y. (2019), Rpair:

Rescaling RePair with rsync, in Proc. 26th

SPIRE, pp. 35-44.

[27] Ferragina, P., and Manzini, G. (2005), Indexing

compressed text, J. ACM, Vol. 52(4), pp. 552-

581.

[28] Gagie, T., Tomohiro, I., Manzini, G., Navarro, G.,

Sakamoto, H., Benkner, L., and Takabatake, Y.

(2020), Practical random access to SLP-

compressed texts, in Proc. 27th SPIRE, pp. 221-

231.

[29] Murugesan, G. (2020), Codon Based

Compression Algorithm for DNA Sequences

with Two Bit Encoding, European Journal of

Molecular and Clinical Medicine, ISSN 2515-

8260, Vol. 07(10), pp. 33-41.

[30] Bruno Carpentieri (2020), Compression of Next-

Generation Sequencing Data and of DNA Digital

Files, MDPI, Algorithms, Vol. 13 (151), pp. 1-

11.

[31] Anibal Guerra, Jaime Lotero and Jose Edinson

Aedo (2020), Tackling the Challenges of FASTQ

Referential Compression, Bioinformatics and

Biology Insights, Vol. 13, pp. 1-19.

[32] Shubham Chandak, Kedar Tatwawadi, Idoia

Ochoa, Mikel Hernaez, and TsachyWeissman

(2018), SPRING: A next-generation compressor

for FASTQ data, Oxford, Bioinformatics, Vol.

35(15), pp. 2674-2676.

[33] Achraf El Allali and Mariam Arshad (2019),

MZPAQ: A FASTQ data compression tool,

Source Code for Biology and Medicine, Vol.

14(3), pp. 1-13.

[34] Sultan Al Yami and Chun-Hsi Huang (2019),

LFastqC: A lossless non-reference-based FASTQ

compressor, PLOS ONE, pp. 1-10.

[35] Muhammad Sardaraz, and Muhammad Tahir

(2021), SCA-NGS: Secure Compression

algorithm for next generation sequencing data

using genetic operators and block sorting,

Science Progress, Vol. 104(2), pp. 1-18.

https://doi.org/10.1109/DCC50243.2021.00016

19

[36] Haichang Yao, Shuai Chen, Shangdong Liu, Kui

Li, Yimu Ji, Guangyong Hu, and RuchuanWang

(2021), Parallel compression for large collections

of genomes, Concurrency Computat. Pract.

Exper. John Wiley & Sons, Ltd., pp. 1-13.

[37] Milton Silva, Diogo Pratas, and Armando J.

Pinho (2020), Efficient DNA sequence

compression with neural networks, Gigascience,

Oxford, pp. 1-15.

[38] Zeinab Nazemi Absardi and Reza Javidan (2019),

A Fast Reference-Free Genome Compression

Using Deep Neural Networks, Proceedings of the

2019 IEEE Conference on Big Data, Knowledge

and Control Systems Engineering (BdKCSE),

IEEE 978-1-7281-6481-6/19.

[39] Rongjie Wang, Tianyi Zang and Yadong Wang

(2019), Human mitochondrial genome

compression using machine learning techniques,

Human Genomics, Vol. 13(1), pp. 1-8.

